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Abstract. Using a four dimensional approach, we show that the singularities for small gluon momenta,
which arise in the usual three dimensional treatment of the annihilation decay, disappear if all poles in the
relative energy are taken into account correctly in the integration. We obtain an explicit formula for the
decay width which involves a non-locality originating from the kinetic energy. We calculate not only the
familiar logarithmic dependence on the binding energy, but also the constant to be added to the logarithm.
The logarithmic term agrees with previous values in the literature. In QCD the constant turns out to
be quite small, but only because there is an almost perfect cancellation between the tree graph and a
non-abelian loop graph which contributes to the decay amplitude to the same order.

1 Introduction

It has been known for a long time that the usual non-
relativistic approach for calculating the decay width of the
1P+−

1 -state into three gluons, as well as the annihilation
of 3P++

1 into a gluon and light quark–antiquark pairs, has
infrared divergences originating from soft gluon momenta.
In the original paper by Barbieri, Gatto, and Remiddi [1]
the problem was avoided by introducing a fictituous width
for the decay into a real and a virtual photon (or gluon).
Their result was (R21(r) is the radial wave function)

Γ
(1P+−

1 → 3 gluons
)

(1.1)

=
5
18

8
π
α3

s

m4 |R′
21(0)|2

[
ln

m

|E| + const.
]
.

Actually only the singular logarithmic dependence on the
binding energy could thus be calculated, while the constant
above was simply ignored. This is a shortcoming because
such a constant, even if not particularly large, could be
quite important since the logarithm is not large in QCD
and even only about 12.6 in QED.

In a series of papers Bodwin, Braaten, Lepage [2] and
collaborators clarified some aspects of the problem by ap-
plying the methods of non-relativistic QCD (NRQCD) [3].
The quarkonium state is not only made up of quark and
antiquark (QQ̄) but contains also Fock state components
with quark–antiquark–glue (QQ̄g) etc. Although this ad-
mixture of glue is suppressed with respect to the dominant
QQ̄-state, it contributes to the decay with the same order.
The reason is that the quark–antiquark annihilation in the
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QQ̄-state is also suppressed, because theQQ̄wave function
at the origin vanishes in the P-state. The QQ̄ in the QQ̄g
component, on the other side, can be in an S-state, thus
compensating the suppression of the Fock state compo-
nent. The divergences found previously are canceled and
the part with the logaritmic dependence on the binding
energy can be calculated; the constant which accompanies
the logarithm remains, however, unknown.

In a further paper on the subject the present author [4]
calculated the glue content in heavy quarkonia in order to
obtain more definite statements. Although this calculation
was successful and gave reasonable results, it turned out
that it was, at least up to now, not helpful for calculating
the decay width.

In the present work we go back to a more fundamental
formalism. It involves the four dimensional T -matrix for
the annihilation of the quark–antiquark pair into gluons, as
well as the four dimensional Bethe–Salpeter wave function,
taken in the approximation coming from the static Salpeter
equation. Both quantities depend on the relative energy
p0 = (p1 − p2)0/2 of the quark–antiquark pair. The usual
non-relativistic approach is equivalent to considering only
the poles of the BS wave function when integrating over p0.
The p0-dependence of the T -matrix is, however, ignored by
fixing the quarks on mass shell there. As will be discussed
in the following, this procedure is legitimate in most cases,
like decays of S-wave states, or decays into two real gluons.
It fails, however, for the decay of the 1P+−

1 -state into three
gluons if one of the gluons is soft.

The contributions from the poles in the T -matrix are
only of relevance if one of the gluons is soft. In this region,
however, they are crucial, because they cancel the singular-
ities in the leading term. Thus the correct consideration of
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all poles gives an expressionwhich is free of divergences. An-
other phenomenon which was already found in [4] arises in
the soft region: A non-abelian graph, where a soft transver-
sal gluon splits into two Coulomb gluons, while the latter
couple to quark and antiquark, contributes to the same
order as the tree graph. The reason is that the direct cou-
pling of a soft transversal gluon to a non-relativistic quark
is also suppressed.

Our result is not directly expressible by the derivative
of the radial wave function at the origin, because it contains
expressions of the form k+ |E|+p2/m in the denominator,
with k a gluon energy, E the binding energy, and p2/m the
kinetic energy. The presence of the kinetic energy intro-
duces a non-locality. For a Coulomb potential one can carry
through the calculation analytically till the end. We agree
with the formulae in the literature as far as the logarithmic
dependence on the binding energy is concerned.Beyond this
we can calculate the constant term to be added to the log-
arithm. For the decay of the singlet P-state of positronium
into three photons (where the non-abelian contribution is
of course absent) our constant differs from the one given by
Alekseev [5]. In the non-abelian case the resulting constant
is very small, but only due to a miraculous almost total
cancellation between large terms originating from the tree
graph, the non-abelian loop graph, and the mixing term.

In our approach no QQ̄g component in the wave func-
tion shows up at all. All contributions come from the four
dimensionalQQ̄wave function alone. Nevertheless one may
reinterpret our result in terms of the non-relativistic picture
and the presence of a quark–antiquark–glue component in
the wave function.

In Sect. 2 we discuss the situation and derive the gen-
eral formalism. In Sect. 3 we specialize to a Coulomb wave
function and present an analytic formula. In Sect. 4 we
discuss the experimental status and future applications.

2 Four dimensional versus
three dimensional approach

Consider an annihilation decay of a quarkonium state in
the rest frame into three (or analogously into two) gluons.
In the familiar three dimensional approach one proceeds
as follows. The quark energies p0

1 and p0
2 in the T -matrix

for QQ̄ → gluons are taken on mass shell and the quark
momenta smeared with the Schrödinger wave function. The
amplitude, with the gluon momenta defined as in Fig. 1,
then becomes

〈ka
1k

b
2k

c
3|K〉 (2.1)

=
i(2π)4δ(4)(k1 + k2 + k3 −K)√

(2π)3m

∫
T (p)ψ̃(p)d3p,

with pµ = (p1 − p2)µ/2 the relative momentum. The de-
pendence of the T -matrix on the gluon momenta k1,k2,k3,
polarization vectors ε1, ε2, ε3, and color indices a, b, c has
been suppressed. We used the standard covariant normal-
ization of states and relativistic normalization of T , the
Schrödinger wave function is normalized to 1. TheT -matrix

for quark–antiquark into gluons is a slowly varying function
of p, with a scale set by the quark mass m, while the wave
function ψ̃(p) is non-relativistic, i.e. dominated by soft
momenta of the order of αsm. Therefore one can expand
the T -matrix around p = 0. For S-states it is sufficient
to consider the leading term T (0), the remaining integral
gives the wave function in position space at the origin,

T (0)
∫
ψ̃(p)d3p = T (0)(2π)3/2ψ(0). (2.2)

For P-states (with magnetic quantum number m) one has
to expand up to first order in p, resulting in

[(∇p)n
T (p)]

∣∣∣
p=0

∫
pnψ̃(p)d3p

= −i [(∇p)n
T (p)]

∣∣∣
p=0

Y1m(e(n))(2π)3/2R′(0), (2.3)

with R(r) the radial wave function.
For decays into two gluons, which give the leading con-

tribution for states with positive charge conjugation, i.e.
1S−+

0 or 3P++
J for J = 0, 2 (3P++

1 cannot decay into two
real gluons) there are no problems. Both gluons have to
be hard for kinematical reasons. Therefore the denomina-
tor of the quark propagator in T (p) cannot vanish and no
singularities can arise.

Let us next discuss the three gluon decay shown in Fig. 1
which is the leading contribution for annihilation decays
of states with negative charge conjugation, i.e. 3S−−

1 or
1P+−

1 .
With the quark energies taken on mass shell, and the

quark momenta considered only up to first order, the de-
nominators of the two quark propagators become (we al-
ways use kj ≡ |kj | in the following)

(p1 − k1)2 −m2 + iε = −2mk1 + 2p1k1 + iε,

(k2 − p2)2 −m2 + iε = −2mk2 + 2p2k2 + iε. (2.4)

This is the well known reason for the possible appearance
of divergences which can arise from small k1 or k2.

Let us now view the situation in the framework of a four
dimensional treatment of the three gluon decay, focusing
on the problematics for the P-state. The amplitude in Fig. 1
has the form

〈ka
1k

b
2k

c
3|K〉 = − (2π)4δ(4)(k1 + k2 + k3 −K)√

(2π)5m
(2.5)

×
∫

Tr[T (p, p0)Γ (p)]

k

k

k
p

p

1

2

1

2

k - p
1

2 2
3

p  - k
1

Fig. 1. The lowest order contribution to the three gluon decay
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×
{

(|E| + p2/m) ψ̃(p)
}

/
{(
p0 + |E|/2 + p2/2m− iε

)
× (p0 − |E|/2 − p2/2m+ iε

)}
dp0 d3p.

As before, T denotes the T -matrix for the annihilation
of the quark–antiquark pair into gluons. Γ (p) is the spin
wave function of the bound state. For a singlet state it
reads Γ (p) = Λ(p1)(γ5/

√
2)Λc(p2). Here Λ(pk) are the

projectors to positive energy states; in our case we need
them only up to order pk, where they read

Λ(p1) =
1 + γ0

2
+

αp1

2m
,

and (2.6)

Λ(p2)c =
1 − γ0

2
− αp2

2m
.

Finally ψ̃(p) is again the Schrödinger wave function, while
E is the binding energy. We used the well known p0-
dependence of the Bethe–Salpeter wave function as it arises
from the static approximation to the BS equation.

We first discuss the trace in the numerator. For the
graph in Fig. 1 it is

Tr {Γ (p)γn2 [� k2− � p2 +m]γn3 [(� p1− � k1) +m]γn1} .
(2.7)

This is only needed in zeroth order of p for S-states, and
in first order for P-states. The zeroth order of the trace
contains factors . . . (k2−k2 γ) . . . (k1+k1 γ ) . . .; therefore
there is no trouble for the three gluon decay of S-states;
the factors of the numerator cancel the singularities in k1
and k2 of the denominator.

The calculation of the order p term of the trace is
rather easy due to a simplification which comes from the
p-dependence of the projectorsΛ(p) andΛc(−p). Together
with the other factors, it leads to anticommutators of γ-
matrices. The order p term of the trace becomes

4i {pn2kn
1 εn1n3n + pn1kn

2 εn2n3n} . (2.8)

Now there are no factors which contain both k1 and k2.
Therefore some of the singularities of the denominator re-
main uncancelled and lead to the well known divergence in
the calculation of the decay of 1P+−

1 into three gluons. Note
that the trace (2.8) is independent of the zero components
p0
1 and p0

2. This will facilitate the discussion below.
We next have to perform the integration over p0 in (2.5).

The usual approach is equivalent to fixing the energies p0
1

and p0
2 on mass shell in the T -matrix, which means putting

p0 = |E|/2 + p2/(2m) in the first, and p0 = −|E|/2 −
p2/(2m) in the second quark propagator. Only the p0-
dependence from the Salpeter wave function is considered
and the p0-integration performed; thus we end up with
the simple formula (2.1). In this way one has made three
approximations.
(1) The values of p0 in the T -matrix have been fixed by
the on shell prescription instead of using the residue at the
pole of the wave function.

(2) The contributions from the remaining poles have been
neglected.
(3) For P-states, where one has to expand up to order
p, the p-dependence of the projection operators Λ has
been ignored.

Let us come to the correct p0-integration in the four
dimensional formula (2.5). The Salpeter wave function has
a pole ε+w in the upper half plane, and a pole ε−w in the lower
half plane. There are four more poles from the two prop-
agators in T , which we denote by ε±1 , and ε±2 . Altogether
the poles are

ε±w = ∓ (|E|/2 + p2/(2m) − iε
)
, (2.9)

ε±1 = −m+ |E|/2 + k1 ∓
(√

m2 + (k1 − p)2 − iε
)
,

ε±2 = m− |E|/2 − k2 ∓
(√

m2 + (k2 + p)2 − iε
)
.

We have to calculate the following integral where the
first four factors come from the quark propagators in the
T -matrix, the last two from the four dimensional wave func-
tion

I = − 1
2πi

∫ ∞

−∞

{
(|E| + p2/m)

}
(2.10)

/
{
(p0 − ε+2 )(p0 − ε−2 )(p0 − ε+1 )

× (p0 − ε−1 )(p0 − ε+w)(p0 − ε−w)
}

dp0.

We perform the p0-integration by closing the integration
contour in the upper half plane (which, temporarily, in-
troduces an apparent asymmetry between quark and anti-
quark). There are three contributions originating from the
three poles at ε+w , ε

+
1 , ε

+
2 :

I = −(|E| + p2/m)
(

1
Dw

+
1
D1

+
1
D2

)
. (2.11)

The denominators which appear here are

Dw =
∏
n

′
(ε+w − εn), D1 =

∏
n

′
(ε+1 − εn),

D2 =
∏
n

′
(ε+2 − εn), (2.12)

where the products
∏

n
′ run over the five remaining poles.

If all three gluons are hard, the contribution 1/Dw
from the pole ε+w is dominant because Dw contains the
small ultrasoft difference ε+w − ε−w = −(|E| + p2/m). This
cancels the corresponding factor in front of (2.11). All the
other differences appearing in the three denominators are
hard for hard gluons; therefore the contributions 1/D1 and
1/D2 are suppressed compared to the leading term 1/Dw
by a relative factor of the order (|E|/m + p2/m2). The
momentum p2 is on mass shell on the pole ε+w , while p1 is
slightly off shell. One may, however, also put p1 on mass
shell in Dw, which corresponds to replacing ε+w − ε±1 by
ε−w − ε±1 . This again only causes a relative error of order



172 D. Gromes: Singular behavior of 1P+−
1 quarkonium and positronium annihilation decays

|E|/m and leads back to the old formula from the three
dimensional treatment.

The situation is more subtle if one of the gluons is soft
or ultrasoft. The other two are then, of course, hard.

We start with the case where k3 → 0, i.e. when the
quark propagators in the T -matrix become identical and
create a double pole. Both D1 and D2 become singular for
k3 → 0 which is due to the factor

ε+1 − ε+2 = −k3 −
√
m2 + (k1 − p)2

+
√
m2 + (k2 + p)2 (2.13)

(we used k1 + k2 + k3 = 2m − |E|). This factor enters,
however, with opposite signs in D1 and D2, while all the
other factors become identical for k3 → 0. Therefore there
is no singularity for k3 → 0 in the sum.

For k1 → 0 the first propagator gets near to the mass
shell. This behavior shows up only in Dw and is due to
the difference

ε+w − ε−1 = −|E| − p2/(2m) +m− k1

−
√
m2 + (k1 − p)2

→ −(k1 + |E| + p2/m) for k1 → 0. (2.14)

Finally we look at the limit k2 → 0, where the second quark
propagator becomes on shell. In Dw there is a difference
which becomes small, namely

ε+w − ε+2 = −p2/(2m) −m+ k2 +
√
m2 + (k2 + p)2

→ k2 for k2 → 0. (2.15)

InD2 there are two differences which become small, namely
ε+2 − ε+w → −k2, i.e. the negative of the term above, and

ε+2 − ε−w = −|E| − p2/(2m) +m− k2

−
√
m2 + (k2 + p)2

→ −(k2 + |E| + p2/m) for k2 → 0. (2.16)

In the sum the two poles at k2 = 0 cancel, while the
ultrasoft term −(k2 + |E| + p2/m) remains.

Summarizing we found the following result: The con-
tributions of 1/D1 and 1/D2 are negligible if all gluons are
hard. They are also negligible for k3 → 0 because the poles
cancel in the sum, as well as for k1 → 0, because they are
finite in the latter limit. For k2 → 0 finally, the poles at
k2 = 0 in 1/Dw and 1/D2 cancel, while the pole (2.16) in
1/D2 survives. In total one thus obtains

1
Dw

+
1
D1

+
1
D2

=
1 +O(|E|/m+ p2/m2)

D
, (2.17)

where D is obtained from Dw by replacing ε+w − ε+2 by
ε−w − ε+2 . We may also replace ε+w − ε−2 by ε−w − ε−2 because
this difference is always hard. This restores the manifest
symmetry between quark and antiquark.

The spatial momentum p is soft in the bound state de-
scribed by the wave function ψ̃(p). Therefore one can put

p = 0 (as well as E = 0) in all terms where p-dependent
terms are added to hard terms. In the two critical factors,
i.e. in those which become small for small k1 or k2 respec-
tively, one can use the limits in the second lines of (2.14)
and (2.16). This finally leads to the following simple form
for the integral I in (2.10):

I =
1

4m2

1 +O(|E|/m+ p2/m2)
(k1 + |E| + p2/m) (k2 + |E| + p2/m)

. (2.18)

The apparent singularities for k1 → 0 and k2 → 0, which
showed up in the three dimensional approach have turned
out to be spurious. They disappear if all the poles in the
relative energy p0 are considered in the p0-integration. For
j = 1, 2 there remain, however, denominators of the form
kj + |E| + p2/m which become small for small kj and
enforce to keep a finite binding energy in order to avoid a
divergence. Because the binding energy E and the kinetic
energy p2/m are of the same order, one must, however,
also keep the term p2/m for consistency. This leads to a
non-local dependence upon the wave function.

We have to multiply (2.18) with the trace (2.8) and
the remaining contributions from the expression (2.5). We
consider only the first term of the trace (2.8) and multiply
by two, because anyhow the other permutations of the
gluons have to be added. Since this term contains a kn

1 in
the numerator one can drop the ultrasoft terms in the first
factor in (2.18). This finally leads to

〈ka
1k

b
2k

c
3|K〉tree

=
(
dabc

4
√
N

)
i(2π)4δ(4)(k1 + k2 + k3 −K)

× g3[ε1 × ε3] · k1

π3/2m3/2k1

∫
(ε2 · p) ψ̃(p)

k2 + |E| + p2/m
d3p

+permutations. (2.19)

The permutations are the remaining five permutations of
the three gluons. The factor (dabc/(4

√
N)) in front is the

color factor, withN = 3 the number of colors. For the decay
of the singlet P-state of positronium into three gammas it
has to be replaced by 1, while g is replaced by e.

In QED (2.19) would in fact be the leading contribu-
tion to the decay amplitude. In QCD we encounter, how-
ever, the same phenomenon which we found already in [4]
when calculating the admixture of the quark–antiquark–
glue component to the wave function. For the case that k2,
say, is ultrasoft, the loop graph in Fig. 2, where the dashed
lines denote Coulomb gluons, contributes to the same order
as the tree graph in Fig. 1 (although it will not lead to a
logarithmic dependence upon the binding energy).

The reason is that the tree graph is suppressed by the
coupling of a transverse gluon to a non-relativistic quark.
The loop graph, on the other hand, is suppressed by two
more coupling constants, but this is compensated because
the coupling to the quarks via Coulomb gluons is not sup-
pressed. Other loop graphs are not relevant, because they
do not have a sufficient number of denominators which can
become small simultaneously. The same is true for higher
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p
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p
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3

q-k  /2

q+k  /22

2

Fig. 2. The loop graph for the three gluon decay. Note that the
indices of the gluons have been chosen such that the dominant
contribution comes from soft k2

order corrections in the wave function, e.g. exchange of a
transverse gluon. Also the graph in Fig. 2 is only relevant
in the region of ultrasoft k2. This simplifies the calcula-
tion considerably.

If one first integrates over q0 in Fig. 2 one finds a similar
situation as before. Spurious poles in k1 and k3 which show
up at some residues cancel in the sum. Only the variable k2
appears in a denominator which becomes small but finite
for ultrasoft k2. After having performed the q0-integration,
the whole p0-dependence is in the BS wave function and the
p0-integration can be immediately performed. Finally one
can do the integration over d3q which is simplified by the
fact that one can drop the k2 in the Coulomb propagators.
The resulting expression is

〈ka
1k

b
2k

c
3|K〉loop

=
(
dabc

4
√
N

)
i(2π)4δ(4)(k1 + k2 + k3 −K)

× g5N [ε1 × ε3] · k1

2(2π)5/2
√
m

×
∫

(ε2 · p)
p3 f

(√
m(k2 + |E|)

p

)
ψ̃(p) d3p

+permutations, (2.20)

with
f(x) =

π
2

− x

1 + x2 − arctan x. (2.21)

3 Three gluon (or 3 γ) annihilation
of the 1P +−

1 -state

Due to the non-local dependence on the momentum p
in (2.19) and (2.20) one cannot simply express the result
by the derivative of the wave function at the origin. Instead
one has to perform the p-integration explicitly. We carry
this through for the case of the lowest Coulomb P-state
wave function which reads (we drop an irrelevant factor i)

ψ̃(p) =
8
√

2
√
m|E|√
π

R′
21(0)

|p|
(|p|2 +m|E|)3 Y1m(p̂), (3.1)

with |E| ≡ |E2| = (CFαs)2m/16 andCF = (N2−1)/(2N) =
4/3. To make contact with the literature we have split off
the derivative of the wave function at the origin, R′

21(0) =
2(m|E|)5/4/

√
3. The p-integration in (2.19) and (2.20) can

now be performed and we obtain

〈ka
1k

b
2k

c
3|K〉Coulomb

=
(
dabc

4
√

3

)
i(2π)4δ(4)(k1 + k2 + k3 −K)

×[ε1 × ε3] · k1 Y1m(ε2)

×R′
21(0)

[
g3ftree(k1, k2) + g5floop(k1, k2)

]
+permutations. (3.2)

The functions ftree(k1, k2) and floop(k1, k2) arise from the
tree graph and the loop graph, respectively and read

ftree(k1, k2) =
2
√

2
3m3/2k1k3

2

×
(
8E2 + 12|E|k2 + 3k2

2 − 8
√

|E|(|E| + k2)3/2
)
,

floop(k1, k2) =
1

2πm2

1(√|E| +
√
k2 + |E|

)3 . (3.3)

In the calculation of the width we use the gluon energies k1
and k2 as independent variables in the phase space integral,
the region of integration is given by the triangle

0 ≤ k1, k2 ≤ m− |E|/2 ≈ m,

k1 + k2 ≥ m− |E|/2 ≈ m.
(3.4)

As indicated, one can neglect the ultrasoft binding energy
in the boundaries.

One next has to square the T -matrix in (3.2), perform
the summation over gluon polarizations, and integrate over
k1 and k2. Of course one can omit the permutations in one
factor and, instead, multiply by a factor 6. The integra-
tion over k1 gives a factor k2 from the boundaries of phase
space. Therefore only those terms are sensitive to the bind-
ing energy E where both factors become small for small
k2 (see the structure of (2.19)). For the tree term this is
only the case in two permutations, namely the identity
and the exchange k1 ↔ k3, in the remainig four one may
drop E and perform both integrations analytically. In the
two potentially “dangerous” terms, one has to keep the
binding energy. The k2-integration can be performed an-
alytically (with the help of Mathematica). The remaining
k1-dependent function can then be split in two terms. The
first term can be integrated analytically and contains the
logarithmic dependence on E, while in the second term
one can drop E and subsequently also perform the k1-
integration analytically. In the square of the non-abelian
term, as well as in the mixed term, only the identity and
the permutation k1 ↔ k3 contribute. One may put E = 0
there, no logarithmic singularity arises from these terms.

For positronium, where the non-abelian contribution is
absent, the result for the decay width into three gammas
finally becomes

Γ (1P+−
1 → 3γ)

=
8
π
α3

m4 |R′
21(0)|2

[
ln

m

|E| −
(

25
9

+
π2

64
+ 2 ln 2

)]
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=
α8m

96π

[
ln

16
α2 −

(
25
9

+
π2

64
+ 2 ln 2

)]
. (3.5)

The width for the quarkonium decay into three gluons
becomes (5/18 is the color factor)

Γ (1P+−
1 → 3 gluons) =

5
18

8
π
α3

s

m4 |R′
21(0)|2 (3.6)

×
[
ln

m

|E| −
(

25
9

+
π2

64
+ 2 ln 2

)
+

3
√

3π
2
√

2
+

3π
8

]
.

Let us first discuss the positronium case (3.5). Comparing
with the formula of Alekseev [5] which reads

Γ (1P+−
1 → 3γ)Alekseev =

α8m

96π
ln

32
α2 , (3.7)

we see that the logaritmic term ln 16/α2 coincides, but the
constant differs. Instead of ln 2 = 0.693 in Alekseev’s for-
mula we have −

(
25
9 + π2

64 + 2 ln 2
)

= −4.318. The reason
for the discrepancy appears to be that the author of [5]
dropped terms of order unity compared to the logarithm.
Therefore his constant should be only considered as giving
the correct order of magnitude. The precise value of the
constant is, however, of importance even in QED where
the logarithm dominates, as seen from a comparison of the
numerical result. The lifetime according to our formula
becomes τ = 0.00582 s, which is a factor of 1.6 larger than
the lifetime which is derived from (3.7).

There is also a connection to another interesting prob-
lem of QED. Recently Manohar and Ruiz-Femeńıa [6] rean-
alyzed the low energy photon spectrum of the three photon
decay of orthopositronium in the framework of NRQCD.
This work was motivated by the observation of Pestieau
and Smith [7] that the spectrum, as derived by Ore and
Powell [8] long ago, violates Low’s theorem [9]. The au-
thors found agreement with the Ore–Powell formula for
the case that all photons are hard, but obtained devia-
tions if one photon becomes soft. The low energy photon
spectrum (the energies of the remaining two photons are
integrated) does not behave like the Ore–Powell spectrum
but is much softer.

In our approach it is easy to understand the origin of
such a suppression. The k has been replaced by k+ |E| +
p2/m in some of the denominators, i.e. for k → 0 there is
a suppression factor. The above replacement is, however,
only relevant in the denominators which can become small,
not in those which are always hard. In order to obtain the
correct spectrum one must therefore redo the whole Ore–
Powell calculation from the beginning. This will not be
done here, but it would be interesting to check whether we
reproduce the results of [6].

We next discuss our result (3.6) for the quarkonium
decay into three gluons. As far as the logarithmic term is
concerned it coincides with the formula given by Barbieri,
Gatto, and Remiddi [1]. Beyond this we were able to calcu-
late the associated constant term to be added. The three
contributions arise from the square of the tree graph, the
mixed term, and the square of the loop graph. Numerically

they are

−4.31828 + 3.25621 + 1.17810 = 0.116018.

This is a rather striking result. Although the individual
constants are rather large, they almost cancel in the sum.To
get a feeling for the importance of the constant term let us
use |E|/m = (4αs/3)2/16 and choose αs = 0.2 which gives
m/|E| = 225 and ln(m/|E|) = 5.4161. This shows that,
without the consideration of the non-abelian contributions,
the constant term would be quite important. Even worse,
with the constant −4.318 from the tree graph alone the
whole expression would only stay positive if m/|E| > 75,
and the whole approach would make sense only for rather
small binding energies.

Some remarks on the error are appropriate. It is a term
of the order

√|E|/m in the brackets of (3.5) and (3.6). A
consistent calculation of this correction would be extremely
cumbersome, considering the many places where we have
dropped the binding energy. It is, however, possible to
calculate the correction coming from the last step, when
performing the integration in the two permutations which
lead to the logarithmic term. It results in the addition of
a term 13.1

√|E|/m ≈ 0.87 in the bracket of (3.6). The
correction is thus not dramatic, in spite of the quare root
behavior and the large factor in front.

One might be tempted to simplify the whole proce-
dure by replacing the non-local p2/m-dependence in (2.18)
and (2.19) by some average p2/m. This would directly lead
to a result involving |R′(0)|2 for any wave function. In the
non-abelian loop graph there is a dependence on the vari-
able (p − q)2, and it is hard to find a reasonable approxi-
mation for this. Therefore we restrict the discussion to the
abelian case. The result would be

Γ (1P+−
1 → 3γ) (3.8)

≈ α8m

96π

[
ln

16
α2 −

(
3
4

+
π2

64
+ ln(1 + p2/(m|E|)

)]
.

One could next use the virial theorem for the Coulomb po-
tential and put p2/m = |E|. This would obviously lead to
a constant different from that in (3.5). The width would be
multiplied by a factor of 1.33 as compared to (3.5). Thus one
obtains a bad approximation even in QED where the log-
arithmic term ln(1/α2) dominates. This result shows that
the non-locality is essential. On the other hand it demon-
strates the stability of the logarithmic term ∼ ln(1/α2)
against any reasonable approximation which respects the
fact that p2/m and E are of the same order.

4 Conclusions

To our knowledge there are no data on the decay of the
singlet P positronium state. Unfortunately at present there
is also no possibility to test our results for quarkonia ex-
perimentally. For the cc̄ system there is only a doubtful
candidate [10] at 3526 MeV for the 1P+−

1 -state hc, with
width < 1.1 MeV and no annihilation decays observed.
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For the bb̄ system there is not even a candidate. This is
unfortunate because these states would not only provide
an excellent further test for the nature of the long range
spin dependent potential, but also for our ideas about anni-
hilation decays. Our prediction for the annihilation width
is only a slight modification of that given in [1] and reads

Γ (1P+−
1 )

Γ (3P++
0 )

=
10
27

αs

π

(
ln

m

|E| + 0.116
)
. (4.1)

Note, however, that the small number to be added to the
logarithm originates in a highly non-trivial way. It is a
sum of three terms as derived in the previous section:
0.116 = −4.318 + 3.256 + 1.178. The tree graph alone
would give a large negative constant, possibly overcompen-
sate the positive logarithm, and cause the whole approach
to collapse.

From a purely theoretical point of view the annihilation
decays under consideration are highly interesting and pro-
vided some puzzles in the past. We have shown here that a
four dimensional treatment of the decay immediately leads
to a result which is free of infrared diverences and which,
furthermore, allows a definite calculation for any givenwave
function. Notwithstanding the fact that NRQCD has cer-
tainly greatly improved our understanding of low energy
QCD and has led to a systematic and effective way for
calculations, we believe that for some problems, like the
one discussed here, a four dimensional treatment is more
transparent and effective.

We derived our result by using the QQ̄ wave function
only. Nevertheless it is easy to make contact with the three
dimensional approach. The contributions from the poles in
the T -matrix can, alternatively, be interpreted as contri-
butions from QQ̄g components (with a soft gluon) in the
wave function. The advantage in our approach is that we
obtain this contribution immediately in an explicit form.
Obviously these two ways of viewing the situation would
also apply to decays into an arbitrary number of gluons.

The decay of the spin triplet state 3P++
1 into a real

gluon plus a virtual gluon which further decays into a light
quark–antiquark pair shows the same infrared problems as
the decay discussed here. Phenomenologically it is more
interesting, because the charmonium state χc1(1P ) is ex-
perimentally well established and theoretical results can
be compared with the data. This will be undertaken in a
forthcoming work.
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(1976)


